

Presentation at the International Conference "Waste Management: Public Services and Energy Recovery" October 26, 2016 in Budapest

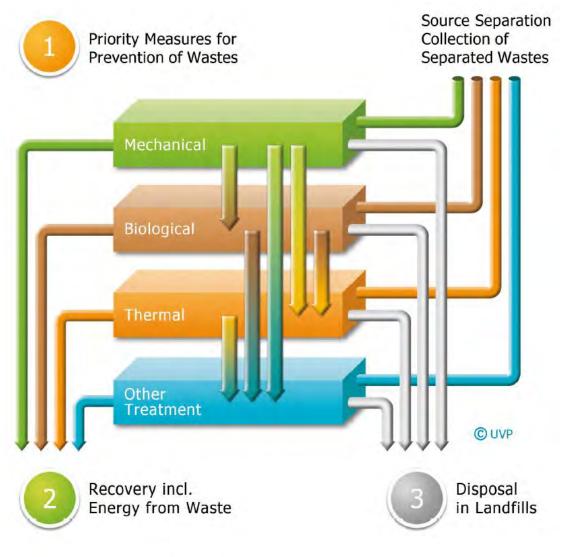
Experiences in Waste Incineration in Austria

Summary of lessons learned in the past 50 years

⇒ avoid (expensive!) mistakes ⇒ cooperate efficiently

Franz Neubacher

Dipl.-Ing. Verfahrenstechnik (T.U. Graz, Austria) M.Sc. Technology & Policy (M.I.T., USA)



Environmental Management and Engineering

A-1020 Vienna, Lassallestrasse 42 / 12a, Austria Tel. + 43-(0)664-2106709, Fax + 43-1-2149520-20 franz.neubacher@uvp.at; http://www.uvp.at

Environmental Consulting & Engineering for Future-oriented Integrated Systems for Sustainable Waste Management

Different technologies are needed for specific wastes in an integrated treatment system.

Successful project design must be based on 1st and 2nd Law of Thermodynamics !

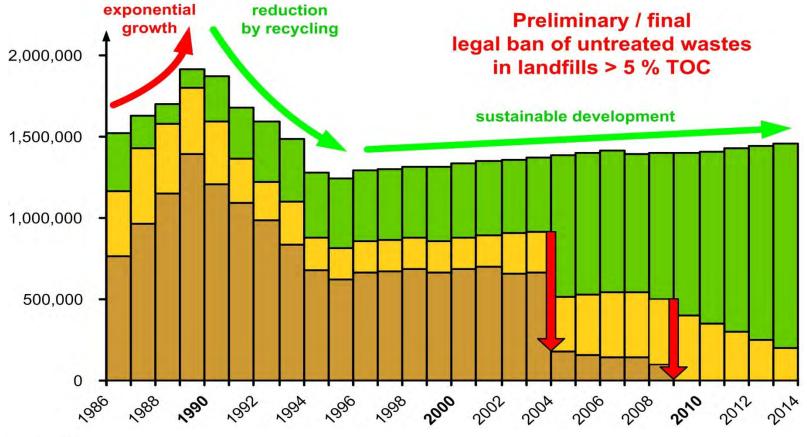
Our project designs are profitable for our clients and good for the environment.

(UVP, since 1991)

Public Education for Environmental Awareness and Prevention of Waste: "The beautiful River Danube starts here"

International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

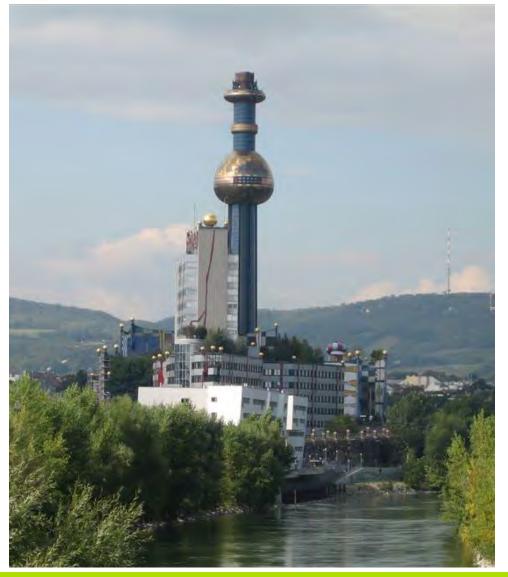
© UVP 2016 412_2_7_HU_Conference-FN-2016-10-26-live-Draft


Treatment of Municipal Solid Waste in Different Countries within the European Union

	Municipal solid	Treatment of municipal solid waste in 2014 (in %)					
	waste in kg per person	Land filling	Incineration	Recycling	Composting		
Austria	578	4	37	24	35		
Germany	617	0	35	47	17		
Spain	449	60	10	10 20			
France	530	28	34	21	17		
Portugal	440	50	24	13	13		
Italy	491	38	21	26	15		
Greece	506	81	0	16	4		
Bulgaria	432	70	2	25	3		
Romania	272	97	0	3	0		
Hungary	378	65	9	21	5		
Slovenia	414	38	1	55	7		
Czech Republic	307	56	20	21	13 15 4 3 0 5 7 3 13		
Poland	297	63	8	16	13		
Denmark	747	2	54	28	17		

Energy Recovery and Disposal of Residual Municipal Solid Waste: 30 Years of Development in Austria

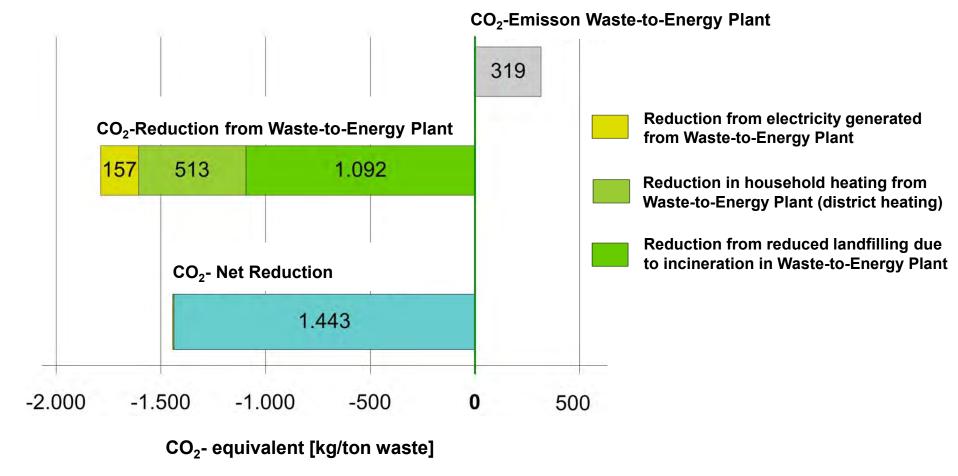
Residual Municipal Solid Waste collected in Austria Figures in tons per year


Waste incineration
 Mechanical biological treatment - MBT
 Landfill

Source: Gerd Mauschitz, Klimarelevanz der Abfallwirtschaft IV, Studie im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, 2010

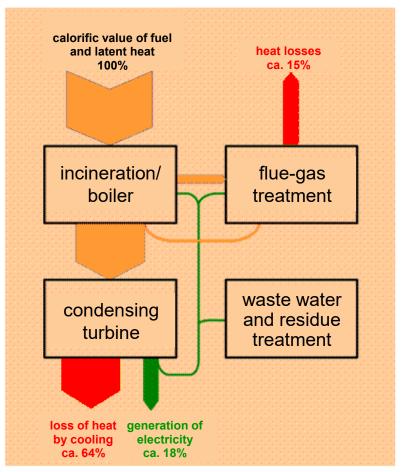
International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

Municipal Waste-to-Energy: Positive Example The Municipal Waste Incineration Plant Spittelau, Vienna

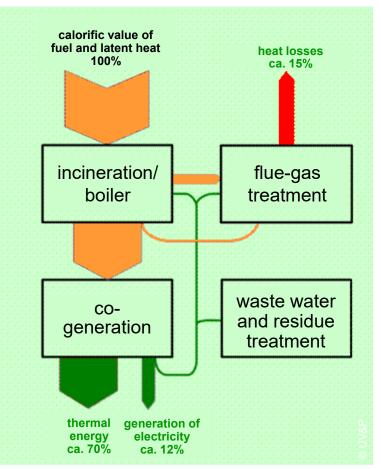


Start of operation:	<u>1971</u>
(Re-) Start up:	1989
Re-vamping boilers:	<u>2013/15</u>
Site:	City of Vienna
Technology:	Grate firing
Fuel capacity:	2 x 44.5 MW
Efficiency:	approx. 76 % (co-generation of electricity and district heat)
Steam production:	2 x 60.5 t / h (40 bar, 400°C)
Average waste	
throughput:	250,000 t / a
Fuel:	residual municipal solid waste

International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

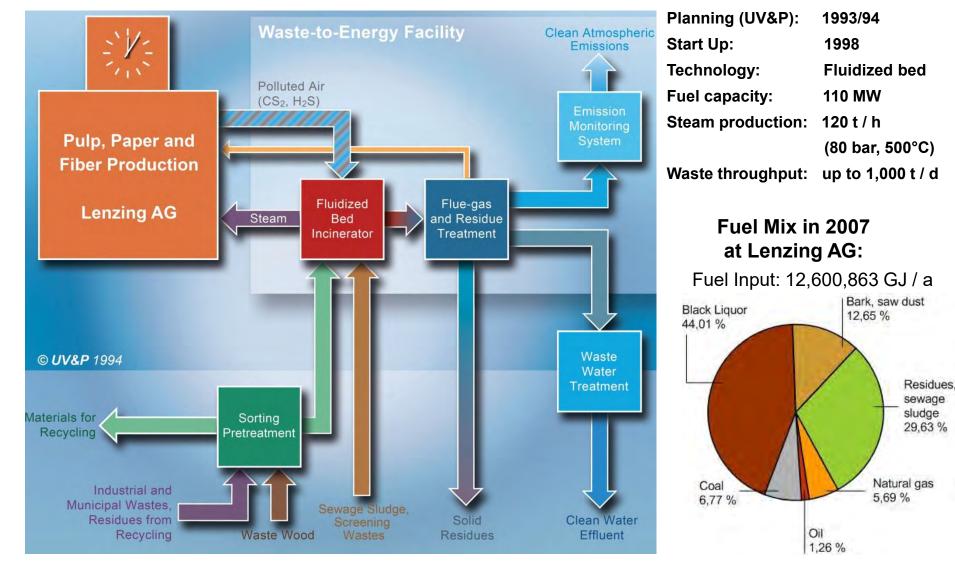

Reduction of Greenhouse - Gas Emissions by Municipal Waste Incineration in Vienna

Source: Kirchner, IIR Conference: Efficient future Waste Treatment Technologies, 2008


Energy Efficiency: Site-specific Options for Utilization of Energy The 3 most important Criteria in any Real Estate: Site, Site, Site!

Condensing Turbine (electricity only)

Energy utilization approx. 20 %


Co-Generation (electricity + heat)

Energy utilization approx. 80 %

Example for Waste-to-Energy in Industrial Production: RVL Lenzing, Upper Austria

International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

Nitrogen ennrey 71.0%	Less than 0.02% of the emissions are toxic emissions		Comparison of emission limits: Figures in mg/Nm ³ (11 % O ₂ , dry)			
Nitrogen approx. 71.0%			AVV BGBI.	RVL Lenzing		
		Directive 2000/76	389/2002	Project 1994	Measured values 2002	
Oxygen	c emissions	10	10	8	0.6	
	Mercury Hg	0.05	0.05	0.05	0.007	
	Hydrogen chloride HCI	10	10	7	0.8	
	Hydrogen fluoride HF	1	0.7	0.3	0.02	
approx. 6.0%	Sulfur dioxide SO ₂	50	50	50	4.1	
Carbon dioxide	Nitrogen oxides NO _X	400	100*)	70	41.6	
approx. 9.6%	Carbon monoxide CO	100	100	50	2.3	
Water steam	Total organic carbon TOC	10	10	8	0.6	
approx. 13.4%			*	f > 6 tons	waste per hour	

Integrated Waste-to-Energy in the Industrial Site of Lenzing within the Tourist Region Salzkammergut, Austria (1993/98)

Know-how for project development by UVP:

The waste-to-energy plant RVL is integrated in the industrial site of Lenzing, Austria – with advanced environmental technology to protect the natural environment (incl. organic farming) in the famous tourist region around Lake Attersee.

The 3 arguments:

- 1. Energy demand (90 MW)
- 2. Reduction of odour (H₂S. CS₂)
- 3. No landfilling (300,000 tons/a)

International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

Atmospheric Emissions for thermal waste treatment in Austria and Switzerland:

Values given in mg/m ³ _N (11% O ₂ , dry; for PCCD/F in ng/m ³)						=> 1/100	=> 1/1000
	Dust	Cd	HCI	SO ₂	NO _x	Hg	PCDD/F*
1970	100	0.2	1,000	500	300	0.5	50
1980	50	0.1	100	100	300	0.2	20
1990	1	0.005	5	20	100	0.01	0.05
2000	1	0.001	1	5	40	0.005	0.05

Source: Vogg (values for 1970 - 1990); RVL (values for 2000)

Legal Emission Standards 1994 in Austria compared to September 2011 Emission Guidelines for MSW in British Columbia: (Bold numbers for ½-Hour Average, *cursive numbers for Daily Average values*):

AT 1994	8	0.05	7	50	70	0.05	0.1
BC 2011	9	0.007	10	50	190	0.02	0.08

Integrated Waste Incineration Plant at a Coal-fired Power Plant of EVN in Zwentendorf, Lower Austria

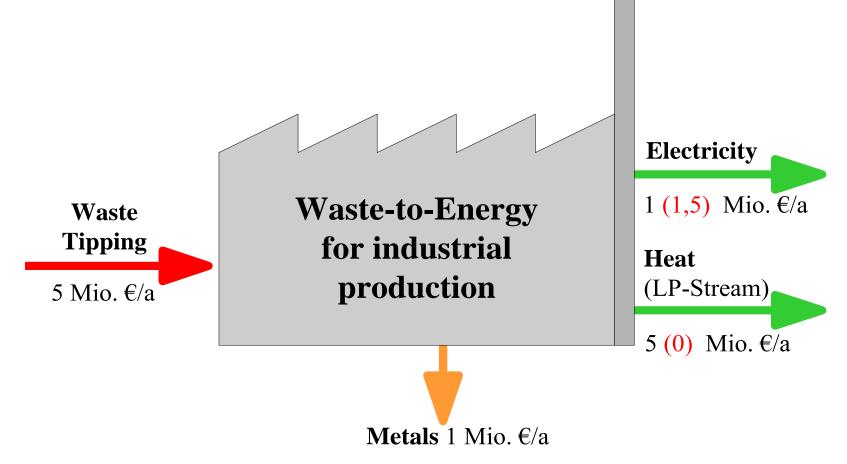
Planning (UV&P):	1999/2001
Start up line 1+ 2:	<u>2003</u>
Start up line 3:	<u>2009</u>
Technology:	Grate firing
Fuel capacity:	2 x 60 MW
	1 x 90 MW
Steam parameters:	50 bar, 380°C
Efficiency:	ca. 76 - 78 % (co-generation)
Average waste throughput:	approx. 500,000 t/a

Please note:

Strictest Emission Standards for waste incineration in order to protect human health and the natural environment

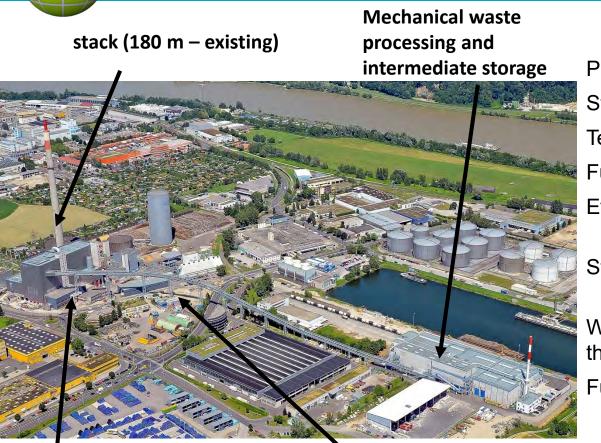
International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary

Example for Waste-to-Energy Plant ENAGES: Integration within the Paper Industry Brigl & Bergmeister in Niklasdorf, Austria


Planning (UV&P):
Start up:
Technology:
Fuel capacity:
Steam production:

Average waste throughput: Fuels: 1994/95 2003 Fluidized bed 40 MW 46 Mg/h (40 bar, 400°C)

approx. 100,000 Mg/a RDF, municipal, commercial and production wastes, sewage sludge


Sustainable Revenues from Waste-to-Energy in a 40 MW BFB Boiler with Integration to an Industrial Site in Austria (in 2014)

The 3 most important criteria in real estate are: site, site, site, site

Source: Pusterhofer, October 2014

RHKW Reststoffheizkraftwerk in the City of Linz, Upper Austria: Co-Generation / District heating based on Waste Derived Fuel

Planning (UV&P): 2006/07 Start Up: 2011 Fluidized bed Technology: Fuel capacity: 72 MW Efficiency: ca 80 % (co-generation) Steam production: 89 t / h (42 bar, 420°C) Waste throughput: up to 800 t / d Fuels: Municipal and commercial waste, sewage sludge, screening wastes

Power plant including fluidized bed boiler Pipe conveyor for waste transport from fuel storage to power plant

No public opposition in 2008 despite severe political conflicts with the "HTV" High Temperature Gasification 1989-91 and intermediate MBT 2004-12

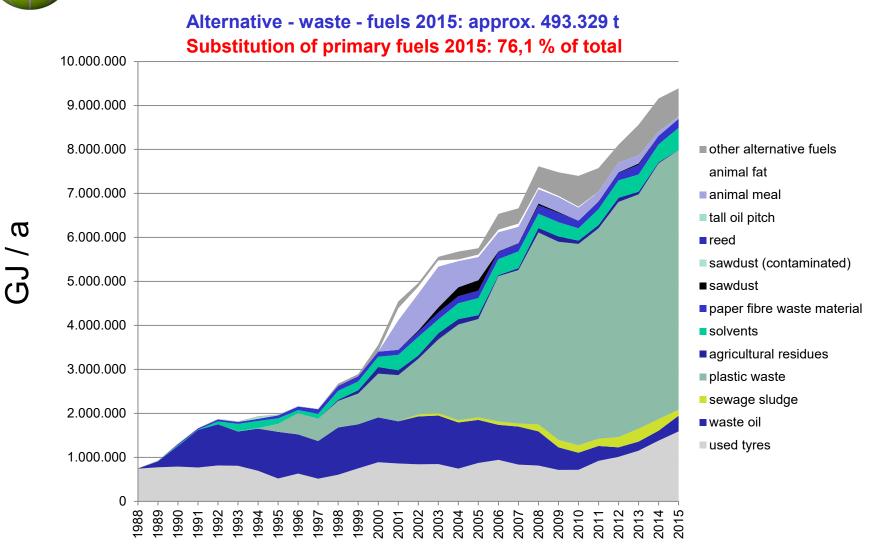
Austria (approx. 8.5 Mio. people)

Hungary (approx. 9.9 Mio. people)

Large facilities for thermal treatment of waste in Austria:

- 15 fluidized bed incinerators
- 14 grate systems
- 3 rotary kilns (for hazardous wastes)
- <u>9 cement kilns with co-firing of waste fuels</u>

Subtotal: 41 facilities in operation


Planned projects:

- 5 fluidized bed incinerators
- 1 grate system

Subtotal: 6 facilities planned

Total: 47 large waste incineration facilities and projects in Austria

Utilization of Alternative Fuels in the Austrian Cement Industry since 1988

Less than 10% of total waste incineration is for cement clinker production in Austria

Source: Association of Austrian Cement Industry, Vienna 2016

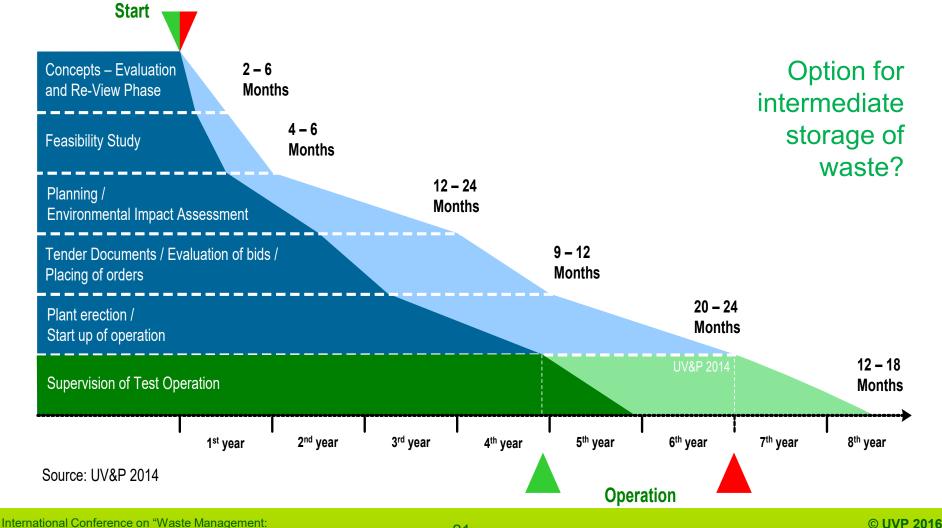
Innovative Concepts for Cement Clinker Production with Best Emission Standards and Resource Efficiency in Austria

- Minimum atmospheric emissions (incl. PM 10, VOC, NOx, CO, and continuous monitoring incl. Hg)
- ✤ Highest energy efficiency due to integration and waste heat export to regional district heating network
- Highest resource efficiency due to utilization of waste-derived alternative raw materials and wastederived hazardous and non-hazardous alternative fuels

The importance of "Prevention" in Sustainable Waste Management must be complemented by "Recovery" of both <u>energy & materials</u> according to the 20-20-20 [40-27-27] Goals of the EU for 2020 [2030] toward a more "Circular Economy" and the vision of "Zero Waste"

- 20% [40%] less GHG Emissions
- 20% [27%] more Renewable Energy
- 20% [27%] more Energy Efficiency

Prognosis for future perspectives:


In 2030 the CO₂ prices will be in the range of 87 to 190 \in /ton and <u>in 2050 in the range of</u> 234 to 310 \in per ton of CO₂ (Umweltbundesamt REP-0491, Vienna 2014)

WtE Spittelau saves approx. <u>1.5 tons of CO_2 per ton of MSW</u> compared to sanitary landfill! Austrian WtE (grate systems, FBC) saves approx.1 ton of CO_2 compared to MBT and RDF!

Activities and Time Schedule for Project Implementation of Large Waste Treatment Projects

Necessary time from project start until start-up of operation: min. 4 to approx. 6 years

Public Services and Energy Recovery" in Hungary

Project Development: Environmentally friendly non-hazardous Intermediate Storage of Solid Wastes in Plastic-wrapped Bales

The calorific value of 1 bale of RDF equals 2 to 3 barrels of crude oil

International Conference on "Waste Management: Public Services and Energy Recovery" in Hungary Foto: W. Kletzmayr, 2006

Overall Costs for Project Development, Implementation and 40 Years of Operation of a Waste-to-Energy Plant

Typical Cash-flow of large Waste-to-Energy Plants over Lifetime (e.g. RVL Lenzing, EVN Lower Austria, RHKW Linz)

Concept- and Feasibility Studies approx. 0.2 – 0.5 Million Euro Management, Consulting & Engineering approx. 10 Million Euro Supply and Construction approx. 100 – 200 Million Euro Operation and Maintenance of Plant (approx. 40 years lifetime) approx. 600 – 1,600 Million Euro

Recommendation:

The determining factor for <u>future success</u> is the competent development and systematic evaluation of relevant technical alternatives and feasibility studies by <u>independent</u> expert teams <u>in cooperation with local partners</u> (costs < 0.01-0.1% of total)

UVP Environmental Management and Engineering

KÖSZÖNÖM SZÉPEN !

Comments & Questions?

A-1020 Vienna, Lassallestrasse 42 / 12a, Austria Tel. + 43-(0)664-2106709, Fax + 43-1-2149520-20 franz.neubacher@uvp.at; http://www.uvp.at

We always cooperate with local partners!